Forward and backward stochastic differential equations with normal constraints in law
نویسندگان
چکیده
منابع مشابه
Mean Field Forward-Backward Stochastic Differential Equations
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
متن کاملForward-Backward Doubly Stochastic Differential Equations with Random Jumps and Stochastic Partial Differential-Integral Equations
In this paper, we study forward-backward doubly stochastic differential equations driven by Brownian motions and Poisson process (FBDSDEP in short). Both the probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs in short) and stochastic Hamiltonian systems arising in stochastic optimal control problems with random jum...
متن کاملBackward Stochastic Differential Equations with Constraints on the Gains - Process
We consider backward stochastic differential equations with convex constraints on the gains (or intensity-of-noise) process. Existence and uniqueness of a minimal solution are established in the case of a drift coefficient which is Lipschitz continuous in the state and gains processes and convex in the gains process. It is also shown that the minimal solution can be characterized as the unique ...
متن کاملForward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection and the differences between the two sets of problems. We prove a new version of the stochastic maximum principle and give sufficient conditions for e...
متن کاملSingular Forward-Backward Stochastic Differential Equations and Emissions Derivatives
We introduce two simple models of forward-backward stochastic differential equations with a singular terminal condition and we explain how and why they appear naturally as models for the valuation of CO2 emission allowances. Single phase cap-and-trade schemes lead readily to terminal conditions given by indicator functions of the forward component, and using fine partial differential equations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2020
ISSN: 0304-4149
DOI: 10.1016/j.spa.2020.07.007